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Energy balance equation for electromagnetic waves in bianisotropic media
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A macroscopic treatment of the energy relations for quasimonochromatic fields in bianisotropic media is
realized by taking into account moderate absorption and effects of temporal and spatial dispersion. It is shown
that spatial dispersion in bianisotropic media provides additional power flow similar to such effects in aniso-
tropic media. A special feature of bianisotropic media is that the energy transport of quasimonochromatic fields
is defined not only by the constitutive parameters of a medium, but also by the structure of the field. The group
velocity correlates with the energy transport velocity only for a certain configuration of the quasimonochro-
matic field.[S1063-651X%96)06310-4

PACS numbe(s): 41.20.Bt, 03.50.De, 03.40.Kf

[. INTRODUCTION balance equation for quasimonochromatic waves in bianiso-
tropic media in the most general form by taking into consid-
At present, we are witnessing a great and continuous ineration moderate absorption and effects of temporal and spa-
terest in electromagnetic-wave—material interactions. Weltial dispersion. To the best of the author’s knowledge, this is
known problems of wave interaction with isotropic and an-the first time such an analysis has been realized. Until now,
isotropic media are enriched now by problems concerningve have had investigations of energetic relations only for
wave interactions with chiral and (ainisotropic media. One time-harmonic electromagnetic waves in chiral and bi-
of the powerful tools to investigate the electromagnetic-wavean)isotropic lossless medig@-5,15. In Ref.[6], a general
propagation in media is an analysis of energy balance equderm of energetic relations was obtained for a time domain
tions. Such an analysis lets us understand the mechanismsf@#ld in bianisotropic media with temporal dispersion. These
storage and absorption of the energy as well as the charactgéneral relations do not permit, however, the analysis of the
of the energy flow. mechanisms of storage and absorption of the energy and the
A macroscopic treatment of the energy relations for quasizharacter of the energy transport.
monochromatic field in anisotropic media was realized by \ye will show that spatial dispersion in bianisotropic me-
taking into account moderate absorption and effects of temg;g provides additional power flow similar to such effects in
poral and spatial dispersidi,2]. In chiral and b@anisotro- 4 nisairopic medidl,2]. A very interesting result is that the

p:':tiz)nnesd[lg’—g?'mrﬁggi:vs;]?lzeiﬁfn rliballesr’::bcj)(facélg](‘:tr:)i?z 'Egﬁif'énergy transport of quasimonochromatic fields may be de-
g ' P 9 fined, not only by parameters of a medium, but also by the

wave propagation in such media with spatial dispersion is - .
poorly developed. Spatial dispersion is a well known phe_gtructure of the electromagnetic field. Such an effect, which
nomenon in plasmi7,8], ferromagnetic$9,10], and optical is a special feature of bianisotropic media, causes the corre-

crystals[11,12. As an initial study of this problem in bi- SPondence between the group velocity and the velocity of

anisotropic media, we can point out Hornreich and Shtrik-N€rgy transport only for a certain structure of quasimono-

man’s work[13], where the effects of spatial dispersion in Chromatic field. _ _ o _ _

natural magnetoelectric materials at optical frequencies were For further general consideration of bianisotropic media

considered. with moderate absorption and temporal and spatial disper-
Taking spatial dispersion into account implies an assumpsion, we will use the terncomplex mediaNecessary analy-

tion that electric and magnetic dipole moments are define@is has to be done for constitutive relations in complex media

not only by the fields in the given point, but also by the fieldswith the quasimonochromatic field.

in the vicinity of the point. At optical frequencies, the wave-

length is essentially greater than spatial scales in a medium

(for example, parameters of a latticand therefore, the ef- || CONSTITUTIVE RELATIONS FOR COMPLEX MEDIA

fects of spatial dispersion in chiral andd)isotropic media WITH QUASIMONOCHROMATIC FIELD

may not be so strong. At the same time, in artificial chiral

and bian)isotropic materials at microwave and millimeter- It is known that to describe electromagnetic fields in me-

wave regions, the effect of spatial dispersion may be consicdia, Maxwell's equations have to be added with constitutive
erable. In these media sizes of small inclusions and distancéglations relating the electric field, the magnetic induction
between them may be comparable with the wavelength anB, the displacement fiel@, and the magnetic field to each
one has to take into account the effects of spatial dispersioather. The constitutive relations in their most general form
in the constitutive relations as a first-order assumption foiare usually given as a relationship between pairs of fields
homogeneous media. These problems may especially arise{®,H} and{E,B} or {D,B} and{E,H}.

guide-wave structures based on artificial chiral aridmiso- For the case of nonmagnetic materials and with the as-
tropic media[14]. sumption of the linear response function, the constitutive re-

The aim of this paper is to obtain and analyze the energyation has the form of the integral relation:
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. o ., . . a finiteness of a time for reorganization of all the system of
Di(r1t):j_ dt fdr €;(t,r,t',r)E(r',t’). (1) dipoles. In fact, such a “memory” is retained during the
time of system relaxatioit, . Therefore, the response func-

Here only the causality principléhat is, the displacement tions decrease rapidly fdr—t">T,. On the other hand, we
field D at the timet is defined by the electric fiel& at the ~May have a nonlocal connection between the fields and the

time t’ <t) is taken into account. For the time-invariant and SYStém reaction. The response functions have to decrease

spatially homogeneous medium, the constitutive relatipn When the differenc¢r —r'| increases. In these assumptions,
has the form of temporal and space convolufiarL1]. we have the convergence of integrals in E@.and(3) and

One can extend the above formulation to the case of lined€ constitutive relations have the form of temporal and

complex media. By taking into account the causality prin-SPace convolution. o _ _
ciple, two forms of constitutive relations are possible: One can use the field renormalization to describe electri-

cal and magnetic properties of a bianisotropic medium only
by the tensor of the permittivity without separation of elec-
. tric polarization and magnetization currents. In such a case,
Di(th):J dt’J dF’ aij(t,F,t’,F’)Ej(F’,t’) we mtrod_uce a vector of generalized electric displacement
—w [2,11]. This procedure was used|ib3] to analyze the effects
. of spatial dispersion in bianisotropic media. We, however,
+J dt’J dF’,Bij(t,F,t’,F’)BJ-(F’,t’), WI.|| analyzg the dlspersmn_effects by taking |nto.con3|der—
—w ation electrical and magnetic properties of a medium.
2) Let us represent the variable field, in E8) as quasimo-
nochromatic quantities:

t
Hi(F,t)zf dtff A 3,y (4.7t FE, (7 1)

é:ém(f’,t)ei(wt*ﬁ‘lf), ézém(f}vt)ei(wtig‘lf)v (4)
t
+ f_wdt'f dr’w(t,r,t’,r’)B;(r',t’), where the amplitudeE,, andB,, are smooth functions of a
coordinate and a time, so that
and
- J
t |(K™V)Epy [ <En, (wlﬁ)Emi <En, (9
Di(F,t)zf dt’J' dr’e;(t,r,t’,rHE;(r',t")
o and
t
+f dt’f dr' &;(t,r,t’,r/)H;(r',t"),
3 L= . d
® |(k™*V)Bp |<Bp, (a) 1E)Bmi <B,,. (6)
Bi(F,t)= ft dt’f dF’ & (4,7, FE; (T 1) One can express the slowly varying amplituﬁ?e,qf’,t’)
—o andB,(r’',t") as a sum of the first few terms of the Taylor
. series
+f dt’f dr’ i (7,7, F)H;(F,t7).
It should be noted thag; in Eq. (3) is not the same as the En(r" ") =En(r,0) +[(F' =1)- VIEw(r,1)
permittivity tensor in Eq(1). JE (F 1)
For time-invariant and spatially homogeneous bianisotro- +(t'—1) -/ (7)
pic medium, the constitutive relatiori®) and (3) may have ot
the form of temporal and space convolution. The temporal
convolution form of the constitutive relations in bianisotro-
pic media was considered [i6] and[16]. We now wish to S P B (F > SR (7
extend such a formulation to the general case of the temporal Brr(r", 1) =Bn(r,{) +[(r"=r)- VIBr(r,0)
and space convolution form of the constitutive relations. For agm( F,t)
this purpose, we have to consider an influence of short-time +(t'—1) o (8)

and short-space electrostatic and magnetostatic interactions
between particles on the polarization properties of a medium.
The functionsq;; , B, %, andy; in Eq. (2) and the func-
tions €, &, &j, andw; in Eq. (3) are real tensor response
functions. For a given time moment, the reaction of a me-
dium is dependent on previous values of the fields because of

On the basis of expressiofig) and(8), using some trans-
formations(see Appendix A we can represent EQR) as

Di(F,t)=Dmiei(“’t"z‘F), Hi(F,)=Hp et 0 (9)
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where ) o aki(w,K) 9Em(TD)
Bmi=§ij(w,k)Emj(r,t)+| = =
ak ar

&aij (w,IZ)aEmj(F't)
-1
dw ot

Din,= @t (@,K) Epy (7,1) Fi

RN + i (0, k) Hin (7,)
) &aij(w,k)&Emj(rat)
—1

+ Bij(©,K) B (7,1)

dw at " f?Mij(iU,k) (?Hmj(r,t) i Ipij(,K) aHmj(r,t)
: (9/3ij(w,|z)aij(F’t) : F7,3ij(w,|2)‘9ij(F’t) o n g &
+i = - i : (19
ok ar Jw ot
(10)
The coefficient&ij(w,IZ) and other coefficients in Eqsl4)
and (15) as well as their derivatives are also defined on the
. ) i (w,K) PEm (1) basis of the Fourier transformation.  _ R
Hmiz yij(w,k)Emj(r,t)Jri L L In our analysis, we introduce the fiells, andB,, in Egs.
ar (10) and(11) and the field€,, andH , in Egs.(14) and(15),

independently one from the other. Such an_assumption is
possible due to conditions Eg&k) and (6) for E,, and B,

and analogous conditions f&,, andH . This independence

of the fields will give us the possibility to impose certain

_ &Vij(w,lz) aij _ &V”(w,g) aij(F,t) conditions on the structure of the complex envelopes of the
i —i . quasimonochromatic field.

i %ij(@,k) 9Em(F1)

+ vy w,lz)B (rt
1 (w,K)B (D)

ok o dw ot

(11)
Ill. POYNTING'S THEOREM

The coefficientsuij(w,IZ) and other coefficients in Eq§10) Let us represent real vectors in Poynting’s theorem as a
and (11), as well as derivatives of these coefficients are decomposition of complex vectors:

fined on the basis of the Fourier transformatisee Appen-
dix A).

Now let us express the fields in E@) as quasimonochro-
matic quantities: - e - -
E—3(E+E*), H—3(H+H*),

(16)

>

E=En(f,0e kN H=H (e *D (12

PV -, e -
On the basis of the analogous procedure, we can rewrite Eq. D—3(D+D*), B—3(B+B"),
(3) as

where complex vectors are defined on the basis of Ejs.
i i and(9) or Egs.(12) and(13). One obtains Poynting's theo-
Di(ﬁt):Dm_ei(wt—k-F), Bi(ﬁt):Bm_ei(m—k-r’), (13) rem for amplitude_s of complgx vectors in accordance with
! : the procedure of time averaging:

where

>

Dy = € (0,K)Ep (T, 1) +i (k) (11 . . . [oD| -

m = €O Em (1 K i ~V-[RAEpxHE)]=R E?%'(W +HE:
m

) aeij(w,IZ) 0Em](th) > . (17)

—1 +§|J(w1k)Hm(rvt)

Jw ot !

R R . R Two types of constitutive relatiof€qgs.(2) and(3)] give
o0& (w,k) Hm(ND - 9g, (w,k) Hm (1D two types of Poynting’s equations. On the basis of expres-
+i oK pe ! o ot : sions (9)—(11) by neglecting the terms containing second-
order derivatives(an assumption of small dispersjprwe
(14 have after some transformations:
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N N N (9((,0&’”) aEmj (96(” aEmj r?(a)ﬁ”) &ij
~V-[Re(EpxH%)]=Re iwa;En Ef + —— Ej—0 — —— E} +i0fBnEn + —Ej,
: dw ot ok ar : dw ot
* *
oy By oy WEnBrn) d(wyf)  Bm ayf B,
-0 — En iy ERBn—0 — + En. tow— m,
ok or ' . dw ot dw "ot ok or
&Vi*j ﬁ(Bﬁ]iji) &(wvﬁ) 9B, ﬁvﬁ ‘9831-
+tiov) B:Wiji_ 0 — + B;j +to———By]|. (19
Jw ot Jw ot ok or
Analogous procedure based on expressid®—(15) gives for Poynting’s theorem:
-> -> kN ) % &(weij) (?Emj % (96”' Emj % i % &(a)é:”) (?Hmj *
— V. [ReEXH)]=R IweijEijmi—’—(?—wT Emi_w (912 o Emi+|w§inijmi+&—wT Emi
9&; Mm, : I wgij) TEm ag;; 9Em, .
_ alz P E;i_*—lwgijEij;i—i—TT Ei—w alz P H*mi+|a)/.Linij;i
o) Hm oz, Mim
+ B2 g o P g | (19

do ot ™ YT ar M

One can see that in spite of formal equivalence of the constitutive reld@pm@sd (3), these relations may give different
forms of Poynting’s equations and therefore different macroscopic treatment of the energy relations. THd flapean
example of how a form of constitutive relations may provide proper macroscopic treatment of the energy relations in aniso-
tropic media.

In this paper, we restrict our analysis to only EfQ). Every term on the right-hand side of E49) is a contraction of two
tensors: a constitutive tens@r its derivativey and a dyadic product of two electromagnetic field vectors. Any tensor of the
second ranKor any dyad A;; can be written as a sum of Hermitiaﬁﬂ- and anti-Hermitianﬁ\f}h tensors(or dyads [18,19.

After some transformationsee Appendix Bwe rewrite Eq.(19) as

~V.S=Q(w,1)+R(k,F)+P, (20)
where
S= L(EXH*+E*xH), (21)
h h h h h ah
Qo t)zlﬁ(wfij)i E*E-)-i—ld(w'uij)i(H-*H)—i—Ea(wg”) E* MHm +18(w§ﬁ) . Hm
' 4 Jdo ot 'V 4 G otV V2 e Mot 2 Jw Mot
h h
R P I C R e (22
2 Jdw Moot 2 Jdw mo ot ’
h h
.. 1 - o€ 1 - [ oul 1 ol MHu\" 1 g M | *
(k,)=—|-oV-| —=E'E; |+ - oV- = HHj |+ -—w—=|E}, —| t-o—|E}, —
4 ok 4 oK 2 ok or 2 ok or

h h

1 0"5” aEmj 1 5§ﬁh aEmj :

L ) I ] B (23
2 ok boor 2 ak boor
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P= 30l €"EFEj+ ui"HIHj+ (4 = €D (HFEDAM+ (65" + &M (HFE) . (24)
|
__For monochromatic fields, we havéaw,t)zo and a form of the continuity equation
R(k,r)=0 and therefore _
= \Y [g+AT]— W B (30)
~V.S=P. (25) ot

The termP describes dissipative losses. The lossless case Rd may be characterized as the energy balance equation

characterized by the following two systems of relations for[1,2,11.
the constitutive tensors. The first system is For weakly absorbing anisotropic media, one can interpret

E’: Z+ (26) the terms in Eq(30): S as average Poynting’s vectdx,as

' the average power flow density caused by spatial dispersion,
where the superscript denotes the transpose and the com-W as the average density of the energy, &nas the average
plex conjugate procedure. The second one is density of the dissipation losses. It is not possitdeen for
media without temporal and spatial dispergioo interpret
physically the terms in Eq.30) when significant absorption
takes place. On the other hand, to interpret the energy bal-
ance equation, the dissipation itself may be not so weak, but
this dissipation has to be strongly reduced by choosing the
corresponding frequency regiphl] or by using the effect of

o oy
=€,

=i,

o e e o
€=€, u=p,

27
(£ = EDHFED+ (L3 + &N (HF Ep"=0.

The relationg26) are well known[3,15]. These relations
mean that the ternP vanishes for all possibl& and H induced transparendL7].
fields. In contrast, the relation®7) demonstrate a certain In this paper, we will show that for a complex medium

correlation between the field structure and the constitutivgyiin weak absorption, the terms in Poynting’s equation may
parameters of a medium which provides nondissipativeyiso he physically interpreted. For some particular cases of

propagation of electromagnetic waves.

the field configuration and material structure we will have

We can assume that for quasimonochromatic fields in g energy conservation law in a form of continuity equation
weakly absorbing bianisotropic medium with temporal and(30)_

spatial dispersion, the terr® also describes dissipative

We can represent Poynting’'s equati@®) in the form

losses and the lossless case is also described by the relations

(26) or (27).

WDA

Let us consider the lossless case which is characterized by —V-(S+App) = B +Que(,t) +Rye(k /) + P,

the relations(26). The tensorss and i are Hermitian and

t

" % (3D
gh=7" Fah— _ 7ah Eor this case, we have
where
& t):EMi(E*E_)_FE&(w’U“”)i(H*H.) h h
VT et T T g gt o) oo demp) L (32
DA™ 4 Jw P Jw P
h h
1 a(wgij) * aHm] * &Emi
+§ o Emi ot +Hmi ot is the density of the quasimonochromatic electromagnetic
field in double anisotropic media characterized by the tensors
1 d(w&" IHp, IEpm, ah € and iz,
4+ = * *
2 Jw Emi ot Hmi Jt (28 _ h h
N 1 (76” * (9,LL|J *
ADA:__w _"Ei Ej+_"Hi H] (33)
- . 1 - (96”' 1 - (?MI] 4 (?k (9k
R(k,r)=—|-oV-| — E'Ej |+ - 0V = Hi'H; ) ) o )
4 ok 4 ok is the density of the energy flow due to spatial dispersion
h effects in_double anisotropic media. The ter@ge(w,t)
1 ag{} . ﬁHmj . r9Emj andRy(k,r) in Eqg. (31) are caused by magnetoelectric ef-
+ > w K Em T+Hmi D fects in bianisotropic media. These terms are defined by the
r r last four terms in expressions E@2) and Eq.(23), respec-
ah oH IEm | " tvely. . .
" 1 © ‘752 (E* My mi) .29 Let us introduce the following quantity:
2 ok \Moar M ogr
_1]d(wé) EXH 4 N w{ij) HEE.
ME™ 4 Jw i Jw Pl
IV. ENERGY BALANCE EQUATION
For quasimonochromatic fields in an anisotropic medium _ } dw&;)) E*H_ + o)) H* E (34)
with temporal and spatial dispersion, Poynting’s theorem has 4| Jw m;t dw mm |
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For

Hp, IEF,

* J: |
Em = Hmj s (35

One obtains from Eq34)

A wlij) IEm,
dw ™ot

mNME_g{mwan Hm,

E* Lt
2| e M ot

For a time average quantity, we have

"™ h h h
IWne _ 1 N wé&j) - IHm, +(9(w§ﬁ)
at 2 Jw Mgt Jw
ah h h
< | E* I, +‘9(‘”§ii) H* %Em,
mo ot dw Mot

ah B, |2
+¢%ng>(H* ,) -

dw mo ot
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For the last four terms in Eq23) one can write

— . Ay
RME(k,r): (9[7 . (43)

For a spatially homogeneous medium, one obtains

Rye(k,/)=V-Aye, (44)
where
—  1fagi+éE)
AME:__ > (H|*Ej)h
4 ak
Eesiat o)
+———=—— (HFE)?"|. (45)
ok

Equations35) and(41) describe a certain structure of the
slowly varying complex envelopes. Such an arbitrary con-
struction of a field structure is possible since the fidigls
andH, may be introduced independently.

This expression corresponds to the last four terms in Eq. [ representations38) and (44) are possible, we have

(22) and, therefore, we can write
MWy e
ot

Quelw,t)= (39

An expression foNVME one obtains on the basis of Egs.

(34) and(B5):

— 1 [del+EN]
MESZ | T g (HPE)
o5&
y Aetdi &) — ](Hi*E,-)ah. (39
Now we introduce the quantity
1 | 9§ 245
I KT Iij |
= ExHm + g HhEm |- (40
For
<9Hmj aE:;i
B o~ Hm 57 “1

we have from Eq(40)

—_— h ah
h h
Awe _ 1 % (E* aHmj) +ﬁ§ial (E* aHmj)
or 2 ok \ ™ or ok \ 7 Moar
ﬂglh] IEm, " ﬁé’?h IEm, o
+—2 | HE — ] + = HE .
ok toor ok toar

continuity-equation form Eq30) of Eq. (20), where

= DA+V\_/ME (46)

and

A:ADA+AME' (47)

We have obtained the continuity-equation form of Poynt-
ing’s theorem for a certain structure of the quasimonochro-
matic field but for an arbitrary form of the constitutive ten-
sors. One can see that expressid®) coincides with the
expression for the average stored density5h We have
shown, however, that in bianisotropic media the notion of the
average stored energy density takes place only for a certain
structure of the field.

V. VELOCITY OF ENERGY TRANSPORT
AND GROUP VELOCITY

For a lossless case characterized by relati@8s or (27)
and for the field structure described by relatiqi3%) and
(41) one can introduce a notion of the energy transport ve-
locity

Ve= (48)

whereS is average Poynting's vectdsee Eq.(21)], W and

A are, respectively, an average density of the engsgg Eq.
(46)] and an average power flow caused by spatial dispersion
[see Eq(47)]. One can also use expressi@®8) for a case of
electromagnetic wave propagation with a weak absorption.
A group velocity is defined as the velocity with which the
whole wave packet moves without a distortion. For the
quasimonochromatic field, the dispersion equatisnw(k)
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may be represented by the first two terms of the Taylor series VI. DISCUSSION
and one can see that the peak of the wave packet is propa-
gated with the group velocityl1,2]] Different forms of constitutive relations may give differ-

ent macroscopic treatment of energy relations for quasimo-
nochromatic fields. Constitutive relatiof) and(3) may be
useful in microwave frequencies. At the optical region, the
separation of electric polarization and magnetization currents
This definition of the group velocity is correct for a losslessmay not be uniquely definefll,2,9,11. In this case, it is
case. In the case of losses, one has to use special analysiscihvenient to combine all induced effects in the bianisotro-
determine the group velocifyl1]. pic material in a renormalized electric dipole moment. The
We will now consider the expression for the group veloc-pjanisotropic medium is characterized now by a tensor of the

ity in a lossless ca§(ethe vectork is rea) of a complex permittivity with parameters dependable from a frequeacy
medium. In Maxwell’'s equations, the fields are representedq 4 wave vectok [13]. This kind of the constitutive rela-

- Jw

Vg=—. 49
9="r (49)

as tions gives the energy balance equation formally coincided
- = > F with the energetic relations for anisotropic optical crystals
E:Eo(w’k)el((utfk»r)_ (50) [11] g p p y

We have analogous representationsHoB, andD. One can Our analysis of complex media based on the constitutive

obtain from Maxwell's equations: relations(3) has demonstrated that a transparency of a com-

I, plex medium for the propagation of monochromatic electro-
o(Bg-H§ +E§ -Dg)=k-(EgXH§ +E§ XHp). (51)  magnetic waves, as well as an energy transport for quasimo-
) _nochromatic waves, may be determined not only by
~ The temporal and space convolution form of the constituparameters of a medium but also by the structure of the field.
tive relations in complex media makes it possible to repreyye have to use combined consideration of the field structure
sent relationd3) as[11,13 and the properties of a medium.
z U c LT NG > For bianisotropic media, Poynting’s theorem has the
Do(w,k) = e(@,k)Eo(w,k) + (@, k)Ho(w,k), continuity-equation form only for a certain structure of the
52 gquasimonochromatic field. The energy transport is possible if
complex envelopes satisfy Eg®5) and (41). Only in this
Let us totally differentiate Eq(51) by k. After some case one can introduce a notion of an average stored energy
transformations analogous the procedure usefillj and =
[21] for an anisotropic medium and taking into account Eq.
(52), one obtains

Bo(@,K) = Z(w,K)Eq(,K) + fi( @,K)Ho( ,K).

W and an additional average power flow caused by the
effects of spatial dispersion.
For the field structure described by E¢35) and(41), we

dw | dwe) _ . dHwm) . . 3(0,5) o can consider energy transport velociie. On the other
— EoEg +——— HoH§ +——— HoE§ hand, one can formally introduce a notion of a group velocity
ok | do Jw Jw Vg as the velocity of moving wave packet without distortion.
- _ _ The group velocity correlates with the energy transport ve-
Hwl) . . de _ o . . locity only if relations(35) and(41) take place.
20 wk ok
05 o 02 o i ( dE, dHo) APPENDIX A: FOURIER TRANSFORMATION
+o —=HoEj+ 0 = EqHS + wEf | € —+& — ) ) o ) o
ok ok dk dk Four integrals in constitutive relation®) are similar to
each other; therefore we will analyze one of them. We de-
A ( _dE, dﬁo) dE, . . . note this integral a&;(r,t). For the time- invariant and spa-
+oH} | { —=+ i — | —w — (*Ef + £ HY) tially homogeneous medium and for the quasimonochro-
dk dk dk matic field, we have
dHy . .

—w — (PEX 4+ G HE) =EoxXHE+EXXHo. (59 ) t o A
dk Fi(r,t):f dt,f dr'aij(r'—r,t'—t)Ej(r’,t’)

As a result of time averaging, for lossless case characterized o
by relations(26), we have an expression fdtg which fully :ei(wtfk-rﬁf dt’f dF e (F=F"t' —t)
coincides with expressio®8) for Ve. -
One can see, however, that we have obtained the expres- R ot 0B P
sion (48) for Ve for a certain structure of complex envelopes XEp (7 t)elle ==l =n], (A1)
which is described by the relation85) and (41). On the
other hand, to obtain an expression f¢g, we did not use
any additional conditions for the field structure. After substituting(7) into (A1), one obtains
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daij(w,K) PEm (T,1)

Fi(F,t)={aij(w,IZ)Emj(F,t)H =

c?a”(w k) 9Em (r t)
Jw ot

‘|el(wt k r), (AZ)
where

- t
aij(ka):f7 dt,f dF,a’ij(F’_F,t,_t)

Xei[w(t’—t)—l?(r"—r')], (A3)
aaij(w’lz) H ! ’ 2 g} Coyr g} =
T:_I 7wdt dr aij(r —I’,t _t)(r _r)

Xei[w(t’*t)*i(-(f'*?)]' (A4)
F7aij(wa|z) (T - I
TZI dt’ [ driay(r'—r,t'—t)(t'—t)

w il —H—k-(F" =] (A5)

APPENDIX B: DERIVATION OF EQ. (20

A contraction of Hermitian and anti-Hermitian tensors of
the second rank is an imaginary quantity. It is evident on the

basis of the following relation:

(A})*(BE"* =—AlB3"=—AlB", (B1)
inary quantlty Analo-

which is the definition of an ima
?B and A3"B3" are

gously, one can be convinced tha
real quantities.

To obtain Eq.(20), we have to consider separately every
term in Eq.(19). Let us consider the first three terms in the

right-hand side of Eg.(19. The term €jEm, E*

E. O. KAMENETSKII

R &(weij) aEmj *
w ot M
*
:}5@’6:}) N aEmj E aEmi
2 dw m gt Mgt
_1d(wel) e 83
and
J€;j &Emj 1 &Eihj &Emj 0"E;i
Re w — —E' [=—w — E*m_ —+E, ——
ok or o2 ok toar oor
1 Jef a
=-0— = (E'E)
2 ok H
1 ae,
= —wV.| —E/E (B4)
2 ok

To obtain Eq.(B4), we took into account that a medium is
spatially homogeneous. We have analogous relations for the
last three terms in the right-hand side of Ef9).

One can be convinced that for arbitrary field configuration

m) "= (HE B )" = (HF En )",

(EpyHm)"+ (ERH
(B5)

On the basis of this relation, we have
ginij:wi"'gijEij?ni
= (&) + &) (HREm)"+ (25—

+ (4~ € (HR Em) 2"+ (6574 ¢

£ (HH E )"
7)(HA Em)"
(B6)

e,JE Em is a contraction of two tensors: the tensor of theand, therefore,

permltt|V|ty € and the dyaoE*E Since the dyadE*E is
Hermitian, we have

Re(iwe;jEn Er,) = wel"EFE; . (B2)

One can see that for quasimonochromatic fields, the dyads

Ef;i((?Emj/(?t) and E*mi((?Emj/aF) are also Hermitiar{20].
Therefore, we have

Re['w(§inij:ni+§ijEij:ni)]
= o[ (= &)(HF,
= o[ (£~ &) (HFE+ (& +

For the other four terms in Eq19), we have the obvious
transformations.

Em )"+ (" () (HREm)"]

EM(HFEN". (BY)
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