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A macroscopic treatment of the energy relations for quasimonochromatic fields in bianisotropic media is
realized by taking into account moderate absorption and effects of temporal and spatial dispersion. It is shown
that spatial dispersion in bianisotropic media provides additional power flow similar to such effects in aniso-
tropic media. A special feature of bianisotropic media is that the energy transport of quasimonochromatic fields
is defined not only by the constitutive parameters of a medium, but also by the structure of the field. The group
velocity correlates with the energy transport velocity only for a certain configuration of the quasimonochro-
matic field.@S1063-651X~96!06310-6#

PACS number~s!: 41.20.Bt, 03.50.De, 03.40.Kf

I. INTRODUCTION

At present, we are witnessing a great and continuous in-
terest in electromagnetic-wave–material interactions. Well
known problems of wave interaction with isotropic and an-
isotropic media are enriched now by problems concerning
wave interactions with chiral and bi~an!isotropic media. One
of the powerful tools to investigate the electromagnetic-wave
propagation in media is an analysis of energy balance equa-
tions. Such an analysis lets us understand the mechanisms of
storage and absorption of the energy as well as the character
of the energy flow.

A macroscopic treatment of the energy relations for quasi-
monochromatic field in anisotropic media was realized by
taking into account moderate absorption and effects of tem-
poral and spatial dispersion@1,2#. In chiral and bi~an!isotro-
pic media, temporal dispersion is a subject of many investi-
gations @3–6#; meanwhile the problem of electromagnetic-
wave propagation in such media with spatial dispersion is
poorly developed. Spatial dispersion is a well known phe-
nomenon in plasma@7,8#, ferromagnetics@9,10#, and optical
crystals@11,12#. As an initial study of this problem in bi-
anisotropic media, we can point out Hornreich and Shtrik-
man’s work @13#, where the effects of spatial dispersion in
natural magnetoelectric materials at optical frequencies were
considered.

Taking spatial dispersion into account implies an assump-
tion that electric and magnetic dipole moments are defined
not only by the fields in the given point, but also by the fields
in the vicinity of the point. At optical frequencies, the wave-
length is essentially greater than spatial scales in a medium
~for example, parameters of a lattice! and therefore, the ef-
fects of spatial dispersion in chiral and bi~an!isotropic media
may not be so strong. At the same time, in artificial chiral
and bi~an!isotropic materials at microwave and millimeter-
wave regions, the effect of spatial dispersion may be consid-
erable. In these media sizes of small inclusions and distances
between them may be comparable with the wavelength and
one has to take into account the effects of spatial dispersion
in the constitutive relations as a first-order assumption for
homogeneous media. These problems may especially arise in
guide-wave structures based on artificial chiral and bi~an!iso-
tropic media@14#.

The aim of this paper is to obtain and analyze the energy

balance equation for quasimonochromatic waves in bianiso-
tropic media in the most general form by taking into consid-
eration moderate absorption and effects of temporal and spa-
tial dispersion. To the best of the author’s knowledge, this is
the first time such an analysis has been realized. Until now,
we have had investigations of energetic relations only for
time-harmonic electromagnetic waves in chiral and bi-
~an!isotropic lossless media@3–5,15#. In Ref. @6#, a general
form of energetic relations was obtained for a time domain
field in bianisotropic media with temporal dispersion. These
general relations do not permit, however, the analysis of the
mechanisms of storage and absorption of the energy and the
character of the energy transport.

We will show that spatial dispersion in bianisotropic me-
dia provides additional power flow similar to such effects in
anisotropic media@1,2#. A very interesting result is that the
energy transport of quasimonochromatic fields may be de-
fined, not only by parameters of a medium, but also by the
structure of the electromagnetic field. Such an effect, which
is a special feature of bianisotropic media, causes the corre-
spondence between the group velocity and the velocity of
energy transport only for a certain structure of quasimono-
chromatic field.

For further general consideration of bianisotropic media
with moderate absorption and temporal and spatial disper-
sion, we will use the termcomplex media. Necessary analy-
sis has to be done for constitutive relations in complex media
with the quasimonochromatic field.

II. CONSTITUTIVE RELATIONS FOR COMPLEX MEDIA
WITH QUASIMONOCHROMATIC FIELD

It is known that to describe electromagnetic fields in me-
dia, Maxwell’s equations have to be added with constitutive
relations relating the electric fieldEW , the magnetic induction
BW , the displacement fieldDW , and the magnetic fieldHW to each
other. The constitutive relations in their most general form
are usually given as a relationship between pairs of fields
$DW ,HW % and$EW ,BW % or $DW ,BW % and$EW ,HW %.

For the case of nonmagnetic materials and with the as-
sumption of the linear response function, the constitutive re-
lation has the form of the integral relation:
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Di~rW,t !5E
2`

t

dt8E drW8e i j ~ t,rW,t8,rW8!Ej~rW8,t8!. ~1!

Here only the causality principle~that is, the displacement
field DW at the timet is defined by the electric fieldEW at the
time t8<t! is taken into account. For the time-invariant and
spatially homogeneous medium, the constitutive relation~1!
has the form of temporal and space convolution@2,11#.

One can extend the above formulation to the case of linear
complex media. By taking into account the causality prin-
ciple, two forms of constitutive relations are possible:

Di~rW,t !5E
2`

t

dt8E drW8a i j ~ t,rW,t8,rW8!Ej~rW8,t8!

1E
2`

t

dt8E drW8b i j ~ t,rW,t8,rW8!Bj~rW8,t8!,

~2!

Hi~rW,t !5E
2`

t

dt8E drW8g i j ~ t,rW,t8,rW8!Ej~rW8,t8!

1E
2`

t

dt8E drW8n i j ~ t,rW,t8,rW8!Bj~rW8,t8!,

and

Di~rW,t !5E
2`

t

dt8E drW8e i j ~ t,rW,t8,rW8!Ej~rW8,t8!

1E
2`

t

dt8E drW8j i j ~ t,rW,t8,rW8!Hj~rW8,t8!,

~3!

Bi~rW,t !5E
2`

t

dt8E drW8z i j ~ t,rW,t8,rW8!Ej~rW8,t8!

1E
2`

t

dt8E drW8m i j ~ t,rW,t8,rW8!Hj~rW8,t8!.

It should be noted thatei j in Eq. ~3! is not the same as the
permittivity tensor in Eq.~1!.

For time-invariant and spatially homogeneous bianisotro-
pic medium, the constitutive relations~2! and ~3! may have
the form of temporal and space convolution. The temporal
convolution form of the constitutive relations in bianisotro-
pic media was considered in@6# and @16#. We now wish to
extend such a formulation to the general case of the temporal
and space convolution form of the constitutive relations. For
this purpose, we have to consider an influence of short-time
and short-space electrostatic and magnetostatic interactions
between particles on the polarization properties of a medium.
The functionsai j , bi j , gi j , andni j in Eq. ~2! and the func-
tions ei j , ji j , zi j , andmi j in Eq. ~3! are real tensor response
functions. For a given time moment, the reaction of a me-
dium is dependent on previous values of the fields because of

a finiteness of a time for reorganization of all the system of
dipoles. In fact, such a ‘‘memory’’ is retained during the
time of system relaxationTr . Therefore, the response func-
tions decrease rapidly fort2t8@Tr . On the other hand, we
may have a nonlocal connection between the fields and the
system reaction. The response functions have to decrease
when the differenceurW2rW8u increases. In these assumptions,
we have the convergence of integrals in Eqs.~2! and~3! and
the constitutive relations have the form of temporal and
space convolution.

One can use the field renormalization to describe electri-
cal and magnetic properties of a bianisotropic medium only
by the tensor of the permittivity without separation of elec-
tric polarization and magnetization currents. In such a case,
we introduce a vector of generalized electric displacement
@2,11#. This procedure was used in@13# to analyze the effects
of spatial dispersion in bianisotropic media. We, however,
will analyze the dispersion effects by taking into consider-
ation electrical and magnetic properties of a medium.

Let us represent the variable field, in Eq.~2! as quasimo-
nochromatic quantities:

EW 5EW m~rW,t !ei ~vt2kW•rW !, BW 5BW m~rW,t !ei ~vt2kW•rW !, ~4!

where the amplitudesEW m andBW m are smooth functions of a
coordinate and a time, so that

u~k21¹W !Emi
u!Em , US v21

]

]t DEmi
U!Em , ~5!

and

u~k21¹W !Bmi
u!Bm , US v21

]

]t DBmi
U!Bm . ~6!

One can express the slowly varying amplitudesEW m(rW8,t8)
andBW m(rW8,t8) as a sum of the first few terms of the Taylor
series

EW m~rW8,t8!.EW m~rW,t !1@~rW82rW !•¹W #EW m~rW,t !

1~ t82t !
]EW m~rW,t !

]t
, ~7!

BW m~rW8,t8!.BW m~rW,t !1@~rW82rW !•¹W #BW m~rW,t !

1~ t82t !
]BW m~rW,t !

]t
. ~8!

On the basis of expressions~7! and~8!, using some trans-
formations~see Appendix A!, we can represent Eq.~2! as

Di~rW,t !5Dmi
ei ~vt2kW•rW !, Hi~rW,t !5Hmi

ei ~vt2kW•rW !, ~9!
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where

Dmi
5a i j ~v,kW !Emj

~rW,t !1 i
]a i j ~v,kW !

]kW

]Emj
~rW,t !

]rW

2 i
]a i j ~v,kW !

]v

]Emj
~rW,t !

]t
1b i j ~v,kW !Bmj

~rW,t !

1 i
]b i j ~v,kW !

]kW

]Bmj
~rW,t !

]rW
2 i

]b i j ~v,kW !

]v

]Bmj
~rW,t !

]t
,

~10!

Hmi
5g i j ~v,kW !Emj

~rW,t !1 i
]g i j ~v,kW !

]kW

]Emj
~rW,t !

]rW

2 i
]g i j ~v,kW !

]v

]Emj
~rW,t !

]t
1n i j ~v,kW !Bmj

~rW,t !

1 i
]n i j ~v,kW !

]kW

]Bmj

]rW
2 i

]n i j ~v,kW !

]v

]Bmj
~rW,t !

]t
.

~11!

The coefficientsa i j (v,k
W ) and other coefficients in Eqs.~10!

and ~11!, as well as derivatives of these coefficients are de-
fined on the basis of the Fourier transformation~see Appen-
dix A!.

Now let us express the fields in Eq.~3! as quasimonochro-
matic quantities:

EW 5EW m~rW,t !ei ~vt2kW•rW !, HW 5HW m~rW,t !ei ~vt2kW•rW !. ~12!

On the basis of the analogous procedure, we can rewrite Eq.
~3! as

Di~rW,t !5Dmi
ei ~vt2kW•rW !, Bi~rW,t !5Bmi

ei ~vt2kW•rW !, ~13!

where

Dmi
5e i j ~v,kW !Emj

~rW,t !1 i
]e i j ~v,kW !

]kW

]Emj
~rW,t !

]rW

2 i
]e i j ~v,kW !

]v

]Emj
~rW,t !

]t
1j i j ~v,kW !Hmj

~rW,t !

1 i
]j i j ~v,kW !

]kW

]Hmj
~rW,t !

]rW
2 i

]j i j ~v,kW !

]v

]Hmj
~rW,t !

]t
,

~14!

Bmi
5z i j ~v,kW !Emj

~rW,t !1 i
]z i j ~v,kW !

]kW

]Emj
~rW,t !

]rW

2 i
]z i j ~v,kW !

]v

]Emj
~rW,t !

]t
1m i j ~v,kW !Hmj

~rW,t !

1 i
]m i j ~v,kW !

]kW

]Hmj
~rW,t !

]rW
2 i

]m i j ~v,kW !

]v

]Hmj
~rW,t !

]t
.

~15!

The coefficientse i j (v,k
W ) and other coefficients in Eqs.~14!

and ~15! as well as their derivatives are also defined on the
basis of the Fourier transformation.

In our analysis, we introduce the fieldsEW m andB
W
m in Eqs.

~10! and~11! and the fieldsEW m andH
W
m in Eqs.~14! and~15!,

independently one from the other. Such an assumption is
possible due to conditions Eqs.~5! and ~6! for EW m andBW m
and analogous conditions forEW m andH

W
m . This independence

of the fields will give us the possibility to impose certain
conditions on the structure of the complex envelopes of the
quasimonochromatic field.

III. POYNTING’S THEOREM

Let us represent real vectors in Poynting’s theorem as a
composition of complex vectors:

EW→ 1
2 ~EW 1EW * !, HW→ 1

2 ~HW 1HW * !,

~16!

DW→ 1
2 ~DW 1DW * !, BW→ 1

2 ~BW 1BW * !,

where complex vectors are defined on the basis of Eqs.~4!
and ~9! or Eqs.~12! and ~13!. One obtains Poynting’s theo-
rem for amplitudes of complex vectors in accordance with
the procedure of time averaging:

2¹W •@Re~EW m3HW m* !#5ReFEW m* •S ]DW

]t D
m

1HW m* •S ]BW

]t D
m

G .
~17!

Two types of constitutive relations@Eqs.~2! and~3!# give
two types of Poynting’s equations. On the basis of expres-
sions ~9!–~11! by neglecting the terms containing second-
order derivatives~an assumption of small dispersion!, we
have after some transformations:
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2¹W •@Re~EW m3HW m* !#5ReF iva i j Emj
Emi
* 1

]~va i j !

]v

]Emj

]t
Emi
* 2v

]a i j

]kW

]Emj

]rW
Emi
* 1 ivb i j Bmj

Emi
* 1

]~vb i j !

]v

]Bmj

]t
Emi
*

2v
]b i j

]kW

]Bmj

]rW
Emi
* 1 ivg i j*Emj

* Bmi
2v

]g i j*

]v

]~Emj
* Bmi

!

]t
1

]~vg i j* !

]v
Emj
*

]Bmi

]t
1v

]g i j*

]kW

]Emj
*

]rW
Bmi

1 ivn i j*Bmj
* Bmi

2v
]n i j*

]v

]~Bmj
* Bmi

!

]t
1

]~vn i j* !

]v
Bmj
*

]Bmi

]t
1v

]n i j*

]kW

]Bmj
*

]rW
BmiG . ~18!

Analogous procedure based on expressions~13!–~15! gives for Poynting’s theorem:

2¹W •@Re~EW m3HW m* !#5ReF ive i j Emj
Emi
* 1

]~ve i j !

]v

]Emj

]t
Emi
* 2v

]e i j

]kW

]Emj

]rW
Emi
* 1 ivj i j Hmj

Emi
* 1

]~vj i j !

]v

]Hmj

]t
Emi
*

2v
]j i j

]kW

]Hmj

]rW
Emi
* 1 ivz i j Emj

Hmi
* 1

]~vz i j !

]v

]Emj

]t
Hmi
* 2v

]z i j

]kW

]Emj

]rW
Hmi
* 1 ivm i j Hmj

Hmi
*

1
]~vm i j !

]v

]Hmj

]t
Hmi
* 2v

]m i j

]kW

]Hmj

]rW
Hmi
* G . ~19!

One can see that in spite of formal equivalence of the constitutive relations~2! and~3!, these relations may give different
forms of Poynting’s equations and therefore different macroscopic treatment of the energy relations. The paper@17# is an
example of how a form of constitutive relations may provide proper macroscopic treatment of the energy relations in aniso-
tropic media.

In this paper, we restrict our analysis to only Eq.~19!. Every term on the right-hand side of Eq.~19! is a contraction of two
tensors: a constitutive tensor~or its derivatives! and a dyadic product of two electromagnetic field vectors. Any tensor of the
second rank~or any dyad! Ai j can be written as a sum of HermitianA i j

h and anti-HermitianA i j
qh tensors~or dyads! @18,19#.

After some transformations~see Appendix B! we rewrite Eq.~19! as

2¹W •SW̄ 5Q̄~v,t !1R̄~kW ,rW !1P̄, ~20!

where

SW̄ 5 1
4 ~EW 3HW *1EW *3HW !, ~21!

Q̄~v,t !5
1

4

]~ve i j
h !

]v

]

]t
~Ei*Ej !1

1

4

]~vm i j
h !

]v

]

]t
~Hi*Hj !1

1

2

]~vj i j
h !

]v
S Emi

*
]Hmj

]t
D h1 1

2

]~vj i j
ah!

]v
S Emi

*
]Hmj

]t
D ah

1
1

2

]~vz i j
h !

]v
SHmi

*
]Emj

]t
D h1 1

2

]~vz i j
ah!

]v
SHmi

*
]Emj

]t
D ah, ~22!

R̄~kW ,rW !52F1
4

v¹W •S ]e i j
h

]kW
Ei*Ej D 1

1

4
v¹W •S ]m i j

h

]kW
Hi*Hj D 1

1

2
v

]j i j
h

]kW
S Emi

*
]Hmj

]rW
D h

1
1

2
v

]j i j
ah

]kW
S Emi

*
]Hmj

]rW
D ah

1
1

2
v

]z i j
h

]kW
S Hmi

*
]Emj

]rW
D h

1
1

2
v

]z i j
ah

]kW
S Hmi

*
]Emj

]rW
D ahG , ~23!
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P̄5 1
2v@e i j

ahEi*Ej1m i j
ahHi*Hj1~z i j

h2j i j
h !~Hi*Ej !

ah1~z i j
ah1j i j

ah!~Hi*Ej !
h#. ~24!

For monochromatic fields, we haveQ̄(v,t)50 and
R̄(kW ,rW)50 and therefore

2¹W •SW̄ 5P̄. ~25!

The termP̄ describes dissipative losses. The lossless case is
characterized by the following two systems of relations for
the constitutive tensors. The first system is

eJ5eJ1, mJ5mJ1, jJ5zJ1, ~26!

where the superscript1 denotes the transpose and the com-
plex conjugate procedure. The second one is

eJ5eJ1, mJ5mJ1,
~27!

~z i j
h2j i j

h !~Hi*Ej !
ah1~z i j

ah1j i j
ah!~Hi*Ej !

h50.

The relations~26! are well known@3,15#. These relations
mean that the termP̄ vanishes for all possibleEW and HW

fields. In contrast, the relations~27! demonstrate a certain
correlation between the field structure and the constitutive
parameters of a medium which provides nondissipative
propagation of electromagnetic waves.

We can assume that for quasimonochromatic fields in a
weakly absorbing bianisotropic medium with temporal and
spatial dispersion, the termP̄ also describes dissipative
losses and the lossless case is also described by the relations
~26! or ~27!.

Let us consider the lossless case which is characterized by
the relations~26!. The tensorseJ andmJ are Hermitian and
jJh5zJh, jJah52zJah. For this case, we have

Q̄~v,t !5
1

4

]~ve i j !

]v

]

]t
~Ei*Ej !1

1

4

]~vm i j !

]v

]

]t
~Hi*Hj !

1
1

2

]~vj i j
h !

]v
S Emi

*
]Hmj

]t
1Hmi

*
]Emj

]t
D h

1
1

2

]~vj i j
ah!

]v
S Emi

*
]Hmj

]t
2Hmi

*
]Emj

]t
D ah, ~28!

R̄~kW ,rW !52F1
4

v¹W •S ]e i j

]kW
Ei*Ej D 1

1

4
v¹W •S ]m i j

]kW
Hi*Hj D

1
1

2
v

]j i j
h

]kW
S Emi

*
]Hmj

]rW
1Hmi

*
]Emj

]rW
D h

1
1

2
v

]j i j
ah

]kW
S Emi

*
]Hmj

]rW
2Hmi

*
]Emj

]rW
D ahG . ~29!

IV. ENERGY BALANCE EQUATION

For quasimonochromatic fields in an anisotropic medium
with temporal and spatial dispersion, Poynting’s theorem has

a form of the continuity equation

2¹W •@SW̄ 1AW̄ #5
]W̄

]t
1P̄, ~30!

and may be characterized as the energy balance equation
@1,2,11#.

For weakly absorbing anisotropic media, one can interpret

the terms in Eq.~30!: SW̄ as average Poynting’s vector,AW̄ as
the average power flow density caused by spatial dispersion,
W̄ as the average density of the energy, andP̄ as the average
density of the dissipation losses. It is not possible~even for
media without temporal and spatial dispersion! to interpret
physically the terms in Eq.~30! when significant absorption
takes place. On the other hand, to interpret the energy bal-
ance equation, the dissipation itself may be not so weak, but
this dissipation has to be strongly reduced by choosing the
corresponding frequency region@11# or by using the effect of
induced transparency@17#.

In this paper, we will show that for a complex medium
with weak absorption, the terms in Poynting’s equation may
also be physically interpreted. For some particular cases of
the field configuration and material structure we will have
the energy conservation law in a form of continuity equation
~30!.

We can represent Poynting’s equation~20! in the form

2¹W •~SW̄ 1AW̄ DA!5
]W̄DA

]t
1Q̄ME~v,t !1R̄ME~kW ,rW !1P̄,

~31!

where

W̄DA5
1

4 F]~ve i j
h !

]v
Ei*Ej1

]~vm i j
h !

]v
Hi*Hj G ~32!

is the density of the quasimonochromatic electromagnetic
field in double anisotropic media characterized by the tensors
eJ andmJ ,

AW̄ DA52
1

4
vF ]e i j

h

]kW
Ei*Ej1

]m i j
h

]kW
Hi*Hj G ~33!

is the density of the energy flow due to spatial dispersion
effects in double anisotropic media. The termsQ̄ME(v,t)
andR̄ME(k

W ,rW) in Eq. ~31! are caused by magnetoelectric ef-
fects in bianisotropic media. These terms are defined by the
last four terms in expressions Eq.~22! and Eq.~23!, respec-
tively.

Let us introduce the following quantity:

WME5
1

4 F]~vj i j !

]v
Ei*Hj1

]~vz i j !

]v
Hi*Ej G

5
1

4 F]~vj i j !

]v
Emi
* Hmj

1
]~vz i j !

]v
Hmi
* Emj G . ~34!
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For

Emi
*

]Hmj

]t
5Hmj

]Emi
*

]t
. ~35!

One obtains from Eq.~34!

]WME

]t
5
1

2
F ]~vj i j !

]v
Emi
*

]Hmj

]t
1

]~vz i j !

]v
Hmi
*

]Emj

]t
G .
~36!

For a time average quantity, we have

]W̄ME

]t
5
1

2
F ]~vj i j

h !

]v
S Emi

*
]Hmj

]t
D h1 ]~vj i j

ah!

]v

3S Emi
*

]Hmj

]t
D ah1 ]~vz i j

h !

]v
SHmi

*
]Emj

]t
D h

1
]~vz i j

ah!

]v
SHmi

*
]Emj

]t
D ahG . ~37!

This expression corresponds to the last four terms in Eq.
~22! and, therefore, we can write

Q̄ME~v,t !5
]W̄ME

]t
. ~38!

An expression forW̄ME one obtains on the basis of Eqs.
~34! and ~B5!:

W̄ME5
1

4 H ]@v~z i j
h1j i j

h !#

]v
~Hi*Ej !

h

1
]@v~z i j

ah2j i j
ah!#

]v
~Hi*Ej !

ahJ . ~39!

Now we introduce the quantity

AME52
1

4
vF ]j i j

]kW
Ei*Hj1

]z i j

]kW
Hi*Ej G

52
1

4
vF ]j i j

]kW
Emi
* Hmj

1
]z i j

]kW
Hmi
* EmjG . ~40!

For

Emi
*

]Hmj

]rW
5Hmj

]Emi
*

]rW
~41!

we have from Eq.~40!

]ĀME

]rW
52

1

2
vF ]j i j

h

]kW
S Emi

*
]Hmj

]rW
D h

1
]j i j

ah

]kW
S Emi

*
]Hmj

]rW
D ah

1
]z i j

h

]kW
S Hmi

*
]Emj

]rW
D h

1
]z i j

ah

]kW
S Hmi

*
]Emj

]rW
D ahG .

~42!

For the last four terms in Eq.~23! one can write

R̄ME~kW ,rW !5
]ĀME

]rW
. ~43!

For a spatially homogeneous medium, one obtains

R̄ME~kW ,rW !5¹W •AW̄ ME , ~44!

where

AW̄ ME52
1

4
F ]~z i j

h1j i j
h !

]kW
~Hi*Ej !

h

1
]~z i j

ah2j i j
ah!

]kW
~Hi*Ej !

ahG . ~45!

Equations~35! and~41! describe a certain structure of the
slowly varying complex envelopes. Such an arbitrary con-
struction of a field structure is possible since the fieldsEW m
andHW m may be introduced independently.

If representations~38! and ~44! are possible, we have
continuity-equation form Eq.~30! of Eq. ~20!, where

W̄5W̄DA1W̄ME ~46!

and

AW̄ 5AW̄ DA1AW̄ ME . ~47!

We have obtained the continuity-equation form of Poynt-
ing’s theorem for a certain structure of the quasimonochro-
matic field but for an arbitrary form of the constitutive ten-
sors. One can see that expression~46! coincides with the
expression for the average stored density in@5#. We have
shown, however, that in bianisotropic media the notion of the
average stored energy density takes place only for a certain
structure of the field.

V. VELOCITY OF ENERGY TRANSPORT
AND GROUP VELOCITY

For a lossless case characterized by relations~26! or ~27!
and for the field structure described by relations~35! and
~41! one can introduce a notion of the energy transport ve-
locity

VW e5
W̄

SW̄ 1AW̄
, ~48!

whereSW̄ is average Poynting’s vector@see Eq.~21!#, W̄ and

AW̄ are, respectively, an average density of the energy@see Eq.
~46!# and an average power flow caused by spatial dispersion
@see Eq.~47!#. One can also use expression~48! for a case of
electromagnetic wave propagation with a weak absorption.

A group velocity is defined as the velocity with which the
whole wave packet moves without a distortion. For the
quasimonochromatic field, the dispersion equationv5v(kW )
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may be represented by the first two terms of the Taylor series
and one can see that the peak of the wave packet is propa-
gated with the group velocity@11,21#

VW g5
]v

]kW
. ~49!

This definition of the group velocity is correct for a lossless
case. In the case of losses, one has to use special analysis to
determine the group velocity@11#.

We will now consider the expression for the group veloc-
ity in a lossless case~the vectorkW is real! of a complex
medium. In Maxwell’s equations, the fields are represented
as

EW 5EW 0~v,kW !ei ~vt2kW•rW !. ~50!

We have analogous representations forHW , BW , andDW . One can
obtain from Maxwell’s equations:

v~BW 0•HW 0*1EW 0* •D
W
0!5kW•~EW 03HW 0*1EW 0*3HW 0!. ~51!

The temporal and space convolution form of the constitu-
tive relations in complex media makes it possible to repre-
sent relations~3! as @11,13#

DW 0~v,kW !5eJ~v,kW !EW 0~v,kW !1jJ~v,kW !HW 0~v,kW !,
~52!

BW 0~v,kW !5zJ~v,kW !EW 0~v,kW !1mJ ~v,kW !HW 0~v,kW !.

Let us totally differentiate Eq.~51! by kW . After some
transformations analogous the procedure used in@11# and
@21# for an anisotropic medium and taking into account Eq.
~52!, one obtains

]v

]kW
F ]~veJ !

]v
EW 0EW 0*1

]~vmJ !

]v
HW 0HW 0*1

]~vjJ!

]v
HW 0EW 0*

1
]~vzJ!

]v
EW 0HW 0* #1v

]eJ

vkW
EW 0EW 0*1v

]mJ

]kW
HW 0HW 0*

1v
]jJ

]kW
HW 0EW 0*1v

]zJ

]kW
EW 0HW 0*1vEW 0* S eJ

dEW 0

dkW
1jJ

dHW 0

dkW
D

1vHW 0* S zJ
dEW 0

dkW
1mJ

dHW 0

dkW
D 2v

dEW 0

dkW
~eJ*EW 0*1jJ*HW 0* !

2v
dHW 0

dkW
~zJ*EW 0*1mJ *HW 0* !5EW 03HW 0*1EW 0*3HW 0. ~53!

As a result of time averaging, for lossless case characterized
by relations~26!, we have an expression forVW g which fully
coincides with expression~48! for VW e.

One can see, however, that we have obtained the expres-
sion ~48! for VW e for a certain structure of complex envelopes
which is described by the relations~35! and ~41!. On the
other hand, to obtain an expression forVW g, we did not use
any additional conditions for the field structure.

VI. DISCUSSION

Different forms of constitutive relations may give differ-
ent macroscopic treatment of energy relations for quasimo-
nochromatic fields. Constitutive relations~2! and~3! may be
useful in microwave frequencies. At the optical region, the
separation of electric polarization and magnetization currents
may not be uniquely defined@1,2,9,11#. In this case, it is
convenient to combine all induced effects in the bianisotro-
pic material in a renormalized electric dipole moment. The
bianisotropic medium is characterized now by a tensor of the
permittivity with parameters dependable from a frequencyv
and a wave vectorkW @13#. This kind of the constitutive rela-
tions gives the energy balance equation formally coincided
with the energetic relations for anisotropic optical crystals
@11#.

Our analysis of complex media based on the constitutive
relations~3! has demonstrated that a transparency of a com-
plex medium for the propagation of monochromatic electro-
magnetic waves, as well as an energy transport for quasimo-
nochromatic waves, may be determined not only by
parameters of a medium but also by the structure of the field.
We have to use combined consideration of the field structure
and the properties of a medium.

For bianisotropic media, Poynting’s theorem has the
continuity-equation form only for a certain structure of the
quasimonochromatic field. The energy transport is possible if
complex envelopes satisfy Eqs.~35! and ~41!. Only in this
case one can introduce a notion of an average stored energy

W̄ and an additional average power flowAW̄ caused by the
effects of spatial dispersion.

For the field structure described by Eqs.~35! and~41!, we
can consider energy transport velocityVW e. On the other
hand, one can formally introduce a notion of a group velocity
VW g as the velocity of moving wave packet without distortion.
The group velocity correlates with the energy transport ve-
locity only if relations~35! and ~41! take place.

APPENDIX A: FOURIER TRANSFORMATION

Four integrals in constitutive relations~2! are similar to
each other; therefore we will analyze one of them. We de-
note this integral asFi(rW,t). For the time- invariant and spa-
tially homogeneous medium and for the quasimonochro-
matic field, we have

Fi~rW,t !5E
2`

t

dt8E drW8a i j ~rW82rW,t82t !Ej~rW8,t8!

5ei ~vt2kW•rW !E
2`

t

dt8E drW8a i j ~rW2rW8,t82t !

3Emj
~rW8,t8!ei @v~ t82t !2kW•~rW82rW !#. ~A1!

After substituting~7! into ~A1!, one obtains
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Fi~rW,t !5Fa i j ~v,kW !Emj
~rW,t !1 i

]a i j ~v,kW !

]kW

]Emj
~rW,t !

]rW

2 i
]a i j ~v,kW !

]v

]Emj
~rW,t !

]t
Gei ~vt2kW•rW !, ~A2!

where

a i j ~v,kW !5E
2`

t

dt8E drW8a i j ~rW82rW,t82t !

3ei @v~ t82t !2kW•~rW82rW !#, ~A3!

]a i j ~v,kW !

]kW
52 i E

2`

t

dt8E drW8a i j ~rW82rW,t82t !~rW82rW !

3ei @v~ t82t !2kW•~r 82rW !#, ~A4!

]a i j ~v,kW !

]v
5 i E

2`

t

dt8E drW8a i j ~rW82rW,t82t !~ t82t !

3ei @v~ t82t !2kW•~rW82rW !#. ~A5!

APPENDIX B: DERIVATION OF EQ. „20…

A contraction of Hermitian and anti-Hermitian tensors of
the second rank is an imaginary quantity. It is evident on the
basis of the following relation:

~Ai j
h !* ~Bi j

ah!*52Aji
h Bji

ah52Ai j
h Bi j

ah , ~B1!

which is the definition of an imaginary quantity. Analo-
gously, one can be convinced thatA i j

h B i j
h andA i j

ahB i j
ah are

real quantities.
To obtain Eq.~20!, we have to consider separately every

term in Eq.~19!. Let us consider the first three terms in the
right-hand side of Eq. ~19!. The term e i j Emj

Emi
*

5e i j Emi
* Emj

is a contraction of two tensors: the tensor of the

permittivity eJ and the dyadEW *EW . Since the dyadEW *EW is
Hermitian, we have

Re~ ive i j Emj
Emi
* !5ve i j

ahEi*Ej . ~B2!

One can see that for quasimonochromatic fields, the dyads
Emi
* (]Emj

/]t) and Emi
* (]Emj

/]rW) are also Hermitian@20#.

Therefore, we have

ReF ]~ve i j !

]v

]Emj

]t
Emi
* G

5
1

2

]~ve i j
h !

]v
S Emi

*
]Emj

]t
1Emj

]Emi
*

]t
D

5
1

2

]~ve i j
h !

]v

]

]t
~Ei*Ej ! ~B3!

and

ReFv
]e i j

]kW

]Emj

]rW
Emi
* G5

1

2
v

]e i j
h

]kW
S Emi

*
]Emj

]rW
1Emj

]Emi
*

]rW
D

5
1

2
v

]e i j
h

]kW

]

]rW
~Ei*Ej !

5
1

2
v¹W •S ]ei j

h

]kW
Ei*Ej D . ~B4!

To obtain Eq.~B4!, we took into account that a medium is
spatially homogeneous. We have analogous relations for the
last three terms in the right-hand side of Eq.~19!.

One can be convinced that for arbitrary field configuration

~Emi
* Hmj

!h1~Emi
* Hmj

!ah5~Hmi
* Emj

!h2~Hmi
* Emj

!ah.

~B5!

On the basis of this relation, we have

j i j Hmj
Emi
* 1z i j Emj

Hmi
*

5~j i j
h1z i j

h !~Hmi
* Emj

!h1~z i j
ah2j i j

ah!~Hmi
* Emj

!ah

1~z i j
h2j i j

h !~Hmi
* Emj

!ah1~j i j
ah1z i j

ah!~Hmi
* Emj

!h

~B6!

and, therefore,

Re@ iv~j i j Hmj
Emi
* 1z i j Emj

Hmi
* !#

5v@~z i j
h2j i j

h !~Hmi
* Emj

!ah1~j i j
ah1z i j

ah!~Hmi
* Emj

!h#

5v@~z i j
h2j i j

h !~Hi*Ej !
ah1~j i j

ah1z i j
ah!~Hi*Ej !

h#. ~B7!

For the other four terms in Eq.~19!, we have the obvious
transformations.
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